## ПРОЕКТИРОВАНИЕ ИМПУЛЬСНОГО ИСТОЧНИКА ПИТАНИЯ В ОНЛАЙН РЕЖИМЕ С ПОМОЩЬЮ SIC MPLAB®

В статье приведена краткая информация о новой бесплатной онлайн программе проектирования импульсных источников питания с использованием SiC полупроводниковых приборов MPLAB SiC Power Simulator. Проведен пример расчета DC/DC-преобразователя мощность 2 кВт с помощью этой программы.

В. Макаренко

Цифровая электроника идет по пути постоянной миниатюризации и уменьшения потребляемой энергии. Но для устройств с большим потреблением энергии, таких как электромобили, электровозы и многие другие, основной задачей является снижение потерь энергии, а не уменьшение мощности самих устройств. А для достижения таких целей необходимо снижать потери в проводах, соединяющих силовые приводы и источники питания, а также потери на переключение в самих преобразователях энергии. Чем меньше ток в силовых цепях, тем меньше потери. Но для обеспечения достаточной мощности приходиться увеличивать рабочее напряжение. Например, в легковых электромобилях повышают рабочее напряжение бортовой сети с 12 до 48 В и до 400-800 В в силовой части.

Электрификация всего и вся стимулирует рост использования полупроводников SiC (на основе карбида кремния) для крупных сегментов рынка, таких как электромобили и другой электротранспорт. Промышленный переход к силовым решениям SiC происходит по причине более высокой скорости переключения (а значит снижения потерь мощности) и возможности работы при более высоких температурах у этих полупроводниковых приборов.

Чтобы помочь инженерам сократить время для перехода на силовые решения SiC, компания Microchip Technology 20 марта 2023 г. выпустила онлайн симулятор MPLAB® SiC Power Simulator, который позволяет в течении нескольких минут спроектировать мощный преобразователь энергии с заданными характеристиками и получить информацию о КПД спроектированного устройства и полный перечень элементов, необходимых для его реализации [1, 2].

### ONLINE SWITCHING POWER SUPPLY DESIGN WITH SIC MPLAB®

Abstract - The article provides brief information about the new free online design program for switching power supplies using SiC semiconductor devices MPLAB SiC Power Simulator. An example of calculating a DC / DC converter with a power of 2 kW was carried out using this program.

#### V. Makarenko

ЭКиС

MPLAB SiC Power Simulator – это программная среда на основе PLECS, разработанная в сотрудничестве с компанией Plexim для предоставления бесплатного онлайн-инструмента, который устраняет необходимость приобретения лицензии на моделирование. MPLAB SiC Power Simulator ускоряет процесс проектирования различных топологий питания на основе SiC. Клиенты могут уверенно тестировать и оценивать решения SiC на этапе проектирования.

Программа позволяет существенно сократить не только время разработки, предоставляя возможность провести сравнительный анализ различных решений, но и сокращает время выбора компонентов. Разработчик силовой электроники, выбирая между транзисторами с сопротивлением открытого канала 25 мОм или 40 мОм SiC MOSFET (например, для трехфазного активного входного преобразователя), может сразу получить результаты моделирования, такие как средняя рассеиваемая мощность и пиковая температура перехода проектируемого устройства.

Ассортимент изделий SiC компании Microchip включает лучшие в отрасли корпуса силовых модулей с самой низкой паразитной индуктивностью (<2.9 нГн), а также лучшие в отрасли дискретные полевые МОП-транзисторы и диоды с номинальным рабочим напряжением до 3.3 кВ, а также модули на 700, 1200 и 1700 В и настраиваемые драйверы цифровых затворов AgileSwitch®.

Эти устройства SiC обладают высокой надежностью, обеспечивающей срок службы оксида затвора не менее 100 лет (прогнозные данные), а SiCдиоды не подвержены деградации. Технология SiC обеспечивает более высокую эффективность системы, удельную мощность и температурную стабильность по сравнению с кремниевыми биполярными транзисторами с изолированным затвором (IGBT) в приложениях высокой мощности.

ЭКиС

Рассмотрим пример работы с программой MPLAB SiC Power Simulator на примере проектирования DC/DC-преобразователя мощностью 2 кВт.

Для начала работы с программой переходим по ссылке, указанной в [2]. В открывшемся окне следует нажать кнопку Go to MPLAB SiC Power Simulator (рис. 1). После этого открывается страница с выбором типа преобразователя, показанная на рис. 2.

Для примера выберем проектирование понижающего обратноходового DC/DC-преобразователя – Flyback Converter. Как только будет помечен этот пункт, открывается страница с топологией преобразователя (рис. 3)

Нажав стрелку в правом нижнем углу экрана, переходим на страницу установки параметров пре-

## MPLAB<sup>®</sup> SiC Power Simulator

#### Advanced Converter-Level Simulation for SiC Devices

Adopt SiC with ease, speed and confidence. The MPLAB<sup>®</sup> SiC Power Simulator calculates the power losses and estimates junction temperature for SiC devices using lab testing data for common power converter topologies in DC-AC, AC-DC and DC-DC applications. This simulator allows you to evaluate device performance quickly in your power converter design. Use this tool to:

- Select proper device and device configurations
- · Evaluate the impact of different gate resistances
- Compare power loss and thermal performance for different devices and different working conditions
- Capture waveforms for passive component design needs

Go to MPLAB SiC Power Simulator



#### Рис. 1. Титульная страница MPLAB SiC Power Simulator

| Topology                                                                                                                        | Devices                                                 | Detai       |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|
| AC-DC                                                                                                                           |                                                         |             |
| <ul> <li>Totem-pole Bridgele</li> <li>Active Front End (3 p</li> <li>Vienna Rectifier (3 p</li> </ul>                           | ess PFC Converter (1/2<br>ohase)<br>hase)               | 2/3 phases) |
| DC-DC                                                                                                                           |                                                         |             |
| <ul> <li>Flyback Converter</li> <li>Boost Converter wit</li> <li>Full-bridge LLC Reso</li> <li>Phase-Shift Full-Brid</li> </ul> | h Synchronized Recti<br>nant Converter<br>Ige Converter | fication    |

## DC-AC

Inverter (3 phase, 2 level)

# Рис. 2. Страница выбора типа преобразователя

образователя и выбора силового транзистора, как показано на рис. 4.

В нижней части экрана выводятся требования к параметрам силового транзистора и перечень доступных для использования транзисторов с указанием основных параметров. В перечне доступен 21 транзистор (на рис. 4 показан фрагмент перечня). В параметрах указаны:

• допустимое обратное напряжение

• сопротивление открытого канала при температуре 25 °C

• максимальный допустимый ток при температуре 25 °C

• тип корпуса и ссылка на даташит.

Выберем для расчета транзистор MSC015SMA070B. Как только он будет помечен открывается страница с топологией и параметрами преобразователя и изображением корпуса транзистора (рис. 5).

Если нажать кнопку Change, то вновь откроется список доступных транзисторов и можно выбрать другой прибор. Если нажать стрелку в правом ниж-



| Topology                                                                                                         | Devices                                                                    | Details | Circuit | Cooling            | Simulation       | Report        |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|---------|--------------------|------------------|---------------|
| AC-DC O Totem-pole Bridgeless PFC Converter (1/2/3 phases) Active Front End (3 phase) Vienna Rectifier (3 phase) |                                                                            |         |         |                    | Flyback Converte | r             |
| Flyback Converte     Boost Converter     Full-bridge LLC R     Phase-Shift Full-F                                | er<br>with Synchronized Rectific<br>lesonant Converter<br>Bridge Converter | ation   |         | C Input<br>voltage | n:1              | + Output V    |
| DC-AC                                                                                                            |                                                                            |         |         |                    |                  |               |
| O Inverter (3 phase                                                                                              | e, 2 level)                                                                |         |         |                    |                  |               |
|                                                                                                                  |                                                                            |         |         |                    |                  | $\rightarrow$ |

## Рис. 3. Топология понижающего DC/DC-преобразователя

|                                                                                                  | Devices                  | Details |                 |                                          |                                       |          |            |
|--------------------------------------------------------------------------------------------------|--------------------------|---------|-----------------|------------------------------------------|---------------------------------------|----------|------------|
| Voltage and pov<br>Input voltage V <sub>in</sub><br>400<br>Output voltage V <sub>out</sub><br>48 | wer rating<br>Vdc<br>Vdc |         |                 |                                          |                                       | *        |            |
| 1                                                                                                |                          |         |                 | (+) Input<br>voltage<br>≻  ⊨             |                                       |          | age V      |
| Rated power P <sub>out</sub>                                                                     | w                        |         |                 |                                          |                                       |          |            |
| <ul> <li>Select MO</li> <li>Please select a device</li> </ul>                                    | OSFET<br>ce.             |         |                 |                                          |                                       |          |            |
| Calculated Param                                                                                 | neter                    | Value   | Unit            |                                          |                                       |          |            |
| Blocking Voltag                                                                                  | ge                       | 448     | s v             |                                          |                                       |          |            |
| Average Curren                                                                                   | nt                       | 5       | A               |                                          |                                       |          |            |
| Device                                                                                           |                          |         | V <sub>DS</sub> | R <sub>DSon</sub> (T <sub>C</sub> =25°C) | I <sub>D</sub> (T <sub>C</sub> =25°C) | Package  | Data Sheet |
| O MSC015SMA0                                                                                     | 070B                     |         | 700             | 15                                       | 140                                   | TO-247   |            |
| O MSC035SMA0                                                                                     | 070B                     |         | 700             | 35                                       | 77                                    | TO-247   |            |
| O MSC035SMA0                                                                                     | 070B4                    |         | 700             | 35                                       | 77                                    | TO-247-4 |            |

Рис. 4. Страница установки параметров преобразователя и выбора силового транзистора

## ИСТОЧНИКИ ПИТАНИЯ

ЭКиС

| Topology                        | Devices       | Details | Circuit | Cooling            | Simulation | Report    |
|---------------------------------|---------------|---------|---------|--------------------|------------|-----------|
| Voltage and po                  | wer rating    |         |         |                    |            |           |
| 400                             | Vdc           |         |         |                    |            |           |
| Output voltage V <sub>out</sub> |               |         |         |                    |            |           |
| 48                              | Vdc           |         |         |                    |            | + Output  |
| Turns ratio n:1                 |               |         |         | · Input<br>voltage | MOSFET     | voltage V |
| Rated power P <sub>out</sub>    |               |         |         |                    |            |           |
| 2000                            | w             |         |         |                    |            |           |
| > MOSFET:                       | MSC015SMA070E |         |         |                    |            | Change    |

Рис. 5. Страница с изображение корпуса выбранного транзистора, топологией и параметрами преобразователя

нем углу экрана, то осуществляется переход на страницу с конфигурацией силового транзистора (рис. 6).

На странице указано число параллельно включенных транзисторов, сопротивление резистора в цепи затвора и предлагается выбор сопротивления открытого канала – номинальное или максимальное значение. Для выбранного типа транзистора номинальное значение сопротивления открытого канала [3] составляет 15 мОм, максимальное значение 19 мОм. Выбираем максимальное значение, нажимаем кнопку перехода на следующую страницу в правой нижней части страницы. На открывшейся странице (рис. 7) можно изменить значение теплового сопротивления Rth, ch и выбрать режим работы - при фиксированной температуре или при фиксированной температуре окружающей среды. В нижней части страницы указано фиксированное значение температуры.

Если выбрать анализ при фиксированной температуре окружающей среды, то необходимо будет ввести дополнительно значение температуры окру-



Рис. 6. Конфигурация силового транзистора



| Topology                                        | Devices                                         |
|-------------------------------------------------|-------------------------------------------------|
| Thermal para                                    | meters<br>grease) resistance R <sub>th.ch</sub> |
| 0.5                                             | ≎ K/W                                           |
| Heat sink model <ul> <li>Fixed tempe</li> </ul> | erature                                         |
| Constant an                                     | nbient temperature                              |
| 75                                              | ≎ °C                                            |

# Рис. 7. Страница выбора температурных параметров

жающей среды, тепловое сопротивление и постоянную времени радиатора.

После нажатия кнопки в правом нижнем углу экрана (примерно через 15-20 секунд) открывается страница (рис. 8) с топологией и заданными пара-



### Рис. 8. Страница с топологией и заданными параметрами преобразователя

метрами преобразователя.

Для получения результатов моделирования следует нажать кнопку Simulate и через несколько секунд на экран выводится информация, приведенная на рис. 9.

Результаты моделирования иллюстрируются графиками изменения во времени напряжений и токов в различных точках преобразователя, а также графиком зависимости температуры перехода транзистора во времени.

Из полученных результатов следует, что при частоте преобразования 20 кГц получены следующие параметры:

 максимальная температура силового транзистора 99.4 °С при температуре окружающей среды 75 °С

 потери мощности транзистора на переключение 20.29 Вт

потери мощности на диоде 51.51 Вт

· КПД составляет 96.29%.

Кроме того, выводится информация о потерях мощности на транзисторе при закрытом и открытом канале.

После нажатия кнопки в правом нижнем углу страницы открывается последняя страница на которой выведены все параметры преобразователя (на рис. 10 показан фрагмент этой страницы). Нажав на значок принтера, можно получить полную копию этой страницы в формате pdf или на бумаге.

На любом этапе работы с программой можно вернуться назад и поменять параметры моделирования. Конечно это предварительный расчет потенциальных возможностей такого преобразователя. Необходимо выбрать драйвер затвора, конденсаторы, катушку индуктивности и диоды с параметрами, указанными на рис. 9. Но если учесть, что моделирование занимает всего несколько минут, то использование этой программы позволит значительно сократить время для принятия решения о выборе силового транзистора и топологии преобразователя.

### ЛИТЕРАТУРА

1. https://www.eejournal.com/industry\_news/newmplab-sic-power-simulator-allows-customers-to-testmicrochips-sic-power-solutions-in-design-phase/

2. https://www.microchip.com/en-us/products/powermanagement/silicon-carbide-sic-devices-and-powermodules/design-resources/mplab-sic-power-simulator

3. https://ww1.microchip.com/downloads/en/Device-Doc/Microsemi\_MSC015SMA070B\_SiC\_MOSFET\_Dat asheet\_C.pdf

## ИСТОЧНИКИ ПИТАНИЯ

ЭКиС



Рис. 9. Результаты моделирования понижающего DC/DC-преобразователя

| Topology                      | Devices                                | Details | Circuit | Cooling | Simulation    | Report |   |  |  |
|-------------------------------|----------------------------------------|---------|---------|---------|---------------|--------|---|--|--|
| Summary for Fly               | Summary for Flyback Converter topology |         |         |         |               |        |   |  |  |
| Rows can be highlighted       |                                        |         |         |         |               |        | - |  |  |
| Parameter                     |                                        |         |         |         | MSC015SMA070B |        | - |  |  |
| Variables 🗸                   |                                        |         |         |         |               |        |   |  |  |
| Selected part                 |                                        |         |         |         | MSC015SMA070B |        |   |  |  |
| Input voltage V <sub>in</sub> |                                        |         |         |         | 400 Vdc       |        |   |  |  |
| Output voltage Vou            | t                                      |         |         |         | 48 Vdc        |        |   |  |  |
| Turns ratio n:1               |                                        |         |         |         | 1             |        |   |  |  |
| Rated power Pout              |                                        |         |         |         | 2000 W        |        |   |  |  |
| Number of parallel            | devices                                |         |         |         | 1             |        |   |  |  |
| Turn-on gate resist           | ance R <sub>g-on,ext</sub>             |         |         |         | 4Ω            |        |   |  |  |
| Turn-off gate resist          | ance Rg-off,ext                        |         |         |         | 4 Ω           |        |   |  |  |
| Use nominal or ma             | ximum R <sub>ds(on)</sub> ?            |         |         |         | Maximum       |        |   |  |  |
| Magnetizing induct            | ance L                                 |         |         |         | 1 mH          |        |   |  |  |
| Load capacitance C            |                                        |         |         |         | 200 uF        |        |   |  |  |
|                               |                                        |         |         |         |               |        |   |  |  |

Рис. 10. Отчет о результатах моделирования понижающего DC/DC-преобразователя

#### www.ekis.kiev.ua